Intro to Algebraic Geometry

Tommy He

1 Introduction

Some basic questions we aim to consider are

- How do we know when 2 collections of polynomials have same vanishing set? *Nullstellensatz*
- What do varieties look like locally? smoothness & singularities
- How do we build new varieties from old ones? morphisms & blowups
- When are varieties "equivalent"? moduli & birational geometry
- How do curves intersect? intersection theory
- · Relation of algebraic geometry with other fields

2 Algebraic Sets

Definition 2.1. The *n*-dimensional affine space \mathbb{A}^n_k over k is k^n with vector space $k[X_1, \dots, X_n]$.

Remark 2.2. Every $f \in k[X_1, \dots, X_n]$ is an evaluation polynomial on $x \in \mathbb{A}^n_k$ where we will write f(x) to denote the evaluation.

Definition 2.3. For $S \subseteq k[X_1, \dots, X_n]$, its *vanishing set* is

$$V(S) = \left\{ x \in \mathbb{A}_k^n \mid \forall P \in S, P(x) = 0 \right\},\,$$

where V(S) is an algebraic set aka closed embedded affine variety.

Example 2.4. If n = 0, then $V(1) = \emptyset$ and $V(0) = \mathbb{A}_k^n$.

Example 2.5. If n = 2, we have "lines" $V(y - ax - b) = \{(x, y) \in \mathbb{A}^2_k \mid y = ax + b\}$ and "conics" $V(a_0x^2 + a_1xy + a_2y^2 + b_0x + b_1y + c)$.

Example 2.6. When n=2, take the points $(\frac{p}{u}, \frac{q}{v})$ in $V=V(x^2+y^2=1)$ over \mathbb{Q} .

Claim 2.7. There are infinitely many primitve Pythagorean triples.

Proof. V forms the integers $u, v, p, q \in \mathbb{Z}$ such that $(vp)^2 + (uq)^2 = (uv)^2$. Therefore, we find them to be in 1-1 correspondence with Pythagoren triples

$$V \leftrightarrow \{\text{primitive Pythagoren triples}\}.$$

By the correspondence above, we only need to show that there are infinitely many points in V. Taking any point in $V \setminus \{(0,1)\}$ and finding the projection from (0,1) onto the x-axis gives a bijection

$$V \setminus \{(0,1)\} \leftrightarrow \mathbb{A}^1_{\mathbb{Q}} = \mathbb{Q}.$$

Example 2.8. The vanishing set depends on the choice of k. Take $f = X^2 - c \in k[X]$.

- If c = 0, then $V(f) = \{0\}$ for any k.
- If $c \neq 0$, then $V(f) = \begin{cases} \{\pm \sqrt{c}\} & \text{if } c \text{ has square root in } k. \\ \emptyset & \text{else.} \end{cases}$

From now on, we assume our field k is algebraically closed and characteristic 0.

3 Regular Functions

Definition 3.1. For algebraic set $V \subseteq \mathbb{A}^n$, map $f: V \to k$ is a *regular function* if it is the restriction of a polynomial function on \mathbb{A}^n . Denote O(V) the set of regular functions on V.

Proposition 3.2. O(V) is a k-algebra.

Proof. O(V) is a unital ring under pointwise addition and multiplication by $(f+g)|_V = f|_V + g|_V$ and $(fg)|_V = f|_V g|_V$ with identities given by constant functions 0, 1. We also have an injective ring map $k \hookrightarrow O(V)$, so we have a k-algebra.

Corollary 3.3. Restriction defines a surjective algebra map $O(\mathbb{A}^n) \twoheadrightarrow O(V)$. From this map we find $O(V) = O(\mathbb{A}^n)/I$ for ideal $I = \{ f \in O(\mathbb{A}^n) \mid f|_V = 0 \}$

4 Hilbert's Nullstellensatz

Definition 4.1. The radical of ideal I in commutative ring R is

$$\sqrt{I} = \{ r \in R \mid r^n \in I, n \in \mathbb{Z}^+ \}.$$

An ideal is *radical* if $I = \sqrt{I}$.

Theorem 4.2 (Hilber's Basis Theorem).

First, we define maps

$$\{T \subseteq O(\mathbb{A}^n)\} \qquad \{W \subseteq \mathbb{A}^n\}$$

$$T \qquad \qquad \mapsto V(T) = \{ p \in \mathbb{A}^n \mid f(p) = 0 \forall f \in T \}$$

$$I(W) = \{ f \in O(\mathbb{A}^n) \mid f(p) = 0 \forall p \in W \} \longleftrightarrow \qquad W$$

Remark 4.3. Immediately, we can see that V and I form a Galois connection since $W \subseteq W' \implies T(W) \subseteq T(W')$ and $T \subseteq T' \implies V(T) \supseteq V(T')$

Lemma 4.4. For $W \subseteq \mathbb{A}^n$, we have $I(W) \subseteq O(\mathbb{A}^n)$ is radical.

Proof. First, to show that $I(W) \leq O(\mathbb{A}^n)$, take any $w_1, w_2 \in I(W), t_1, t_2 \in O(\mathbb{A}^n)$. Then,

$$\begin{aligned} w_1 \big|_W &= w_2 \big|_W = 0 \Rightarrow t_1 w_1 \big|_W = t_2 w_2 \big|_W = 0 \\ &\Rightarrow t_1 w_1 \big|_W + t_2 \big] rst w_2 W = 0 \\ &\Rightarrow (t_1 w_1 + t_2 w_2) \big|_W = 0 \end{aligned}$$

which show $t_1w_1 + t_2w_2 \le O(\mathbb{A}^n)$. To show I(W) is radical, it's first evident that $\sqrt{I(W)} \subseteq I(W)$. Then, we have

$$w \in \sqrt{I(W)} \implies w^i \in I(W) \text{ for } i \in \mathbb{Z}^+$$

$$\implies w(p)^i = 0 \forall p \in W$$

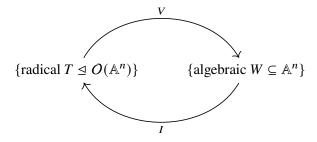
$$\implies w(p) = 0$$

$$\implies w \in I(W)$$

Lemma 4.5. For $T \subseteq O(\mathbb{A}^n)$, $\exists t_1, \dots, t_l \in O(\mathbb{A}^n)$ s.t. $V(T) = V((T)) = V(t_1, \dots, t_l)$.

Proof. To see V(T) = V((T)), it's first evident that $V((T)) \subseteq V(T)$ by the Galois connection above. Then, take any $p \in V(T)$ and $t = \sum_{i=1}^{l} f_i t_i \in (T) : f_i \in O(\mathbb{A}^n), t_i \in T$. Notice that $g_i(p) = 0 \forall i$, and so $p \in V((T))$. Now, we can assume that T is an ideal. By Hilbert's Basis Theorem 4.2, $O(\mathbb{A}^n) = k[X_1, \dots, X_n]$ is Noetherian, and so T is f.g. as $T = (t_1, \dots, t_l)$ for some $t_1, \dots, t_l \in T$. \square

By Lemma 4.4 and Lemma 4.5, we can restrict the above maps to



Theorem 4.6 (Hilbert's Nullstellensatz). *The maps V, I are mutual inverses:*

- 1. For algebraic set $W \subseteq \mathbb{A}^n$, V(I(W)) = W.
- 2. For $T \subseteq O(\mathbb{A}^n)$, $I(V(T)) = \sqrt{T} = T$ if T radical.

5 Zariski Topology

Definition 5.1. For set S, a topology on S is a family of subsets called the closed subsets such that

- 1. Ø and S are closed.
- 2. if X_1, \dots, X_i are closed then so is $X_1 \cup \dots \cup X_i$.
- 3. if $X_i : i \in \mathcal{I}$ are closed for arbitrary index set \mathcal{I} then so is $\bigcap_{i \in \mathcal{I}} X_i$.

A subset of S is open if its complement is closed. A topological space is a set with a topology.

Definition 5.2. Subset T of topological space S is *dense* if any of the following equal conditions hold.

- 1. cl T = S.
- 2. $\forall s \in S$, every neighborhood *U* of *s* intersects *S*.

Theorem 5.3. The algebraic sets form a topology on \mathbb{A}^n .

Proof. 1. $V(O(\mathbb{A}^n)) = \emptyset$ and $V(\{0\})$ are algebraic.

2. Take closed $V_1 = V(I_1), V_2 = V(I_2) \subseteq \mathbb{A}^n$. We claim that $V_1 \cup V_2 = V(I_1 \cap I_2) = V(I_1I_2)$. First, notice that

$$I_1I_2 \subseteq I_1 \cap I_2 \subseteq I_1 \cup I_2 \implies V(I_1I_2) \supseteq V(I_1) \cap V(I_2) \supseteq V_1 \cup V_2$$

by the Galois connection. Conversely, take $p \in V(I_1I_2)$. If $p \in V_1$, then we are done so suppose $p \notin V_1$. Then, let $f_1 \in I_1$ be such that $f_1(p) \neq 0$. For any $f_2 \in I_2$, we have since $p \in V(I_1I_2)$ that $f_1(p)f_2(p) = 0 \implies f_2(p) = 0$, and so $p \in V(I_2) \forall f \in I_1I_2$, f(p) = 0. By induction, we find closure for any finite union.

3.

$$\bigcap_{i \in I} V_i = \bigcap_{i \in I} V(I_i)$$

$$= \{ p \in \mathbb{A}^n \mid f(p) = 0 \forall f \in I_i \forall i \in I \}$$

$$= V \left(\bigcup_{i \in I} V(I_i) \right)$$

Definition 5.4. The topology of algebraic sets in Theorem 5.3 on \mathbb{A}^n is the Zariski topology.

Remark 5.5. More generally the algebraic subsets $V' \subseteq V$ for algebraic set $V \subseteq \mathbb{A}^n$ form a topology on V, which is the subspace topology on V and called the Zariski topology of V.

Lemma 5.6. $V \subseteq \mathbb{A}^1$ is closed iff it is finite.

Definition 5.7. For algebraic set V and $W \subseteq V$, the *closure* of W is the smallest closed subset of V containing W

$$\overline{W} = \bigcap_{\substack{W \subseteq U \subseteq V \\ \text{algebraic}}} U = V(I(W))$$

6 Irreducibility

Definition 6.1. Algebraic set V is *reducible* if \exists closed $V_1, V_2 \subseteq X$ s.t. $V = V_1 \cup V_2$. Else, V is *irreducible*.

Example 6.2. Let I(V) = (f) for $f \in O(\mathbb{A}^n)$. Then V is irreducible iff f is irreducible.

Proposition 6.3. For algebraic set $V \subseteq \mathbb{A}^n$, TFAE

- 1. V is irreducible.
- 2. \forall open, nonempty $U, V \subseteq V, U \cap V \neq \emptyset$.
- 3. Any open, nonempty $U \subseteq V$ is dense.
- 4. Ideal $I(V) \subseteq O(\mathbb{A}^n)$ is prime.
- 5. Algebra $O(V) \cong O(\mathbb{A}^n)/I(V)$ is a domain.

Example 6.4. \mathbb{A}^n is irreducible since $k[X_1, \dots, X_n]$ is a domain.

Theorem 6.5. Every algebraic set $V \subseteq \mathbb{A}^n$ can be written as $V_1 \cup \cdots \cup V_n$ for closed, irreducible $V_1, \cdots, V_n \subseteq V$ and $V_i \nsubseteq X_i$ if $i \neq j$, unique up to permutation.

Definition 6.6. As in Theorem 6.5, $V = V_1 \cup \cdots \cup V_n$ is its *irreducible decomposition* where V_1, \cdots, V_n are the *irreducible components*.

7 Regular Maps

Definition 7.1. For algebraic sets $V_1 \subseteq \mathbb{A}^n, V_2 \subseteq \mathbb{A}^m$, map $\varphi : V_1 \to V_2$ is a *regular map* if $\varphi = (\varphi_1, \dots, \varphi_m)$ where $\varphi_i \in O(V_1)$ such that $\operatorname{im}(\varphi_1, \dots, \varphi_m) \subseteq V_2$.

Remark 7.2. The algebraic sets with regular maps as morphisms form a category. The regular maps $\varphi: V_1 \to V_2$ correspond contravariantly bijectively with k-algebra homomorphisms $\varphi^*: O(V_2) \to O(V_1), \psi \mapsto \psi \varphi$ via post-composition.

Lemma 7.3. Every regular map $\varphi: V_1 \to V_2$ is continuous in the Zariski topology.

Definition 7.4. A regular map $\varphi: V_1 \to V_2$ is an *isomorphism* if it is bijective and φ^{-1} is regular.

8 Dimension

Definition 8.1. The *dimension* of algebraic set $V \subseteq \mathbb{A}^n$ is

$$\dim V = \sup\{m \in \mathbb{Z}_{\geq 0} \mid \exists V_0 \subsetneq V_1 \subsetneq \cdots \subsetneq V_m : V_i \text{ closed, irreducible } \forall i\}.$$

Equivalenty, dim V is the Krull dimension of O(V) given by

$$\dim O(V) = \sup\{m \in \mathbb{Z}_{\geq 0} \mid \exists O(V) \not \geq I_0 \supsetneq I_1 \supsetneq \cdots \supsetneq I_m : I_i \text{ prime } \forall i\}.$$

Remark 8.2. Immediately, we have $V_1 \subseteq V_2 \implies \dim V_1 \subseteq \dim V_2$.

Theorem 8.3. dim $\mathbb{A}^n = n$.

Corollary 8.4. *If* $V \subseteq \mathbb{A}^n$, then dim V < n.

Definition 8.5. If algebraic sets $V_1 \subseteq V_2$ are, then the *codimension* of V_1 in V_2 is

$$\operatorname{codim}(V_1, V_2) = \dim(V_2) - \dim(V_1)$$

Theorem 8.6 (Special Case of Krull's Hauptidealsatz). For algebraic set $V \subseteq \mathbb{A}^n$, TFAE

- 1. Every irreducible component of V has dimension n-1.
- 2. V = V(f) for some $f \neq 0 \in O(\mathbb{A}^n)$.

Definition 8.7. A hypersurface is an algebraic set V where dim V = n - 1.

9 Tangent Spaces

The Zariski tangent space of algebraic set $V \subseteq \mathbb{A}^n$ at point $p \in V$ is

$$T_pX = \{v \in \mathbb{A}^n \mid \nabla f \big|_p \cdot v = 0 \forall f \in I(X)\}$$

Proposition 9.1. If I(V) is generated by f_1, \dots, f_j , then for $p \in V, v \in T_pV \iff v \in \ker J(f_1, \dots, f_j)$, where J is the Jacobian.

Proof. Let $f = g_1 f_1 + \cdots + g_n f_n$ for $g_i \in V$. Then,

$$\nabla f \Big|_{p} = \sum_{i=1}^{n} g_{i}(p) \nabla f_{i} \Big|_{p} + \nabla g_{i} \Big|_{p} f_{i}$$
$$= \sum_{i=1}^{n} g_{i}(p) \nabla f_{i} \Big|_{p}$$

since $f_i(p) = 0$. Therefore, $v \in T_p V \iff \nabla f_i |_p \dot{v} = 0 \iff v \in \ker(J(f_1, \dots, f_j))$.

Example 9.2. Take V = V(xy) where I(V) = (xy) generated by f = xy. Then,

$$J = \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{pmatrix} = \begin{pmatrix} y & x \end{pmatrix}$$
$$= \begin{cases} \begin{pmatrix} 0 & x \end{pmatrix} & x - axis \\ \begin{pmatrix} y & 0 \end{pmatrix} & y - axis \\ \begin{pmatrix} 0 & 0 \end{pmatrix} & origin \end{cases}$$

Via Prop 9.1, we find the tangent space

$$T_p V = \ker J = \begin{cases} \left\{ \begin{pmatrix} * \\ 0 \end{pmatrix} \middle| * \in k \right\} & p \text{ on } x - \operatorname{axis} \setminus \{(0, 0)\} \\ \left\{ \begin{pmatrix} 0 \\ * \end{pmatrix} \middle| * \in k \right\} & p \text{ on } x - \operatorname{axis} \setminus \{(0, 0)\} \\ k^2 & p \text{ at } (0, 0) \end{cases}$$

Example 9.3. If $V \subseteq \mathbb{A}^n$ is a hypersurface with I(V) = (f), then

$$J(f) = \begin{pmatrix} \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_n} \end{pmatrix}$$

and so there are 2 possibilities:

$$J(f)\big|_p \neq 0 \implies \dim T_p V = n - 1$$

 $J(f)\big|_p = 0 \implies T_p V = k^n$

T_pV as Derivations

Definition 9.4. For k-algebra A with $a, b \in A$, a *derivation* is a k-linear map $D: A \to A$ that satisfies the *Leibniz rule*:

$$D(ab) = D(a)b + aD(b).$$

Definition 9.5. For point $p \in \mathbb{A}^n$, direction vector $v \in k^n$, and $f \in O(\mathbb{A}^n)$, the directional derivative is

$$v_p(f) = \nabla f \big|_p \cdot v$$

which gives a k-linear map $O(\mathbb{A}^n) \to k$, $f \mapsto v_p(f)$.

Lemma 9.6. If D is a derivation, then $D(\lambda) = 0 \forall \lambda \in k$.

Proof. First, note that $D(1) = D(1 \cdot 1) = 1D(1) + D(1)1 \implies D(1) = 0$. Then, by linearity, $D(\lambda) = \lambda D(1) = 0$.

Lemma 9.7. Every derivation D of $O(\mathbb{A}^n)$ based at point $p \in \mathbb{A}^n$ is a directional derivative.

Proof. By Taylor expansion around point p and linearity, we have

$$D(f) = \sum_{i=0}^{\infty} \frac{1}{i!} D\left(\nabla^{i} f \Big|_{p} \cdot (x - p)^{i}\right)$$

$$= D(f(p)) + \nabla f \Big|_{p} \cdot \underbrace{D(x - p)}_{v} + \sum_{i,j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} \Big|_{p} \left(D((x_{i} - p_{i})(x_{j} - p_{j}))) + \cdots\right)$$

$$= 0 + v_{p}(f) + \sum_{i,j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} \Big|_{p} \left(D(x_{i} - p_{i})\underbrace{(x_{j} - p_{j})}_{p_{j} - p_{j} = 0} + \underbrace{(x_{i} - p_{i})}_{p_{i} - p_{i} = 0} D(x_{j} - p_{j})\right) + \cdots$$

$$= v_{p}(f)$$

Corollary 9.8. $T_p\mathbb{A}^n\cong\{derivations\ O(\mathbb{A}^n)\to k\ based\ at\ p\}\ and\ has\ a\ canonical\ basis\ \frac{\partial}{\partial x_1}\Big|_p,\cdots,\frac{\partial}{\partial x_n}\Big|_p$ **Corollary 9.9.** $T_pV^n\cong\{derivations\ O(V)\to k\ based\ at\ p\}.$

T_pV as Ring Homomorphisms

Definition 9.10. Ring $k[\varepsilon]/\varepsilon^2 \cong k \oplus k\varepsilon$ is the *dual numbers*

Proposition 9.11. There is an isomorphism between derivations based at p and certain homomorphisms of $O(V) \to k[\varepsilon]/\varepsilon^2$.

Proof. For derivation $v: O(V) \to k$ at p, map $\widetilde{v}: O(V) \to k[\varepsilon]/\varepsilon^2$, $f \mapsto f(p) + v(f)\varepsilon$ is a ring homomorphism. We can check

$$\begin{split} \widetilde{v}(f)\widetilde{v}(g) &= (f(p) + v(f)\varepsilon)(g(p) + v(g)\varepsilon) \\ &= f(p)g(p) + \underbrace{v(f)g(p)\varepsilon + f(p)v(g)\varepsilon}_{v \text{ is derivation}} + \underbrace{v(f)v(g)\varepsilon^2}_{0} \\ &= (fg)(p) + v(fg)\varepsilon \\ &= \widetilde{v}(fg) \end{split}$$

T_pV as Thickened Points

T_pV as Quotient of Maximal Ideals

Definition 9.12. The dual vector space of T_pV is the *cotangent space* and denoted $T_p^*V \cong m_p/m_p^2$

10 Smoothness and Singularities

Definition 10.1. The *local dimension* of algebraic set $V \subseteq \mathbb{A}^n$ at $p \in V$ is

$$\dim_p V = \max\{\dim W \mid W \text{ irreducible component of } V : p \in W\}$$

Definition 10.2. Point $p \in V$ is smooth if $\dim T_p V = \dim_p V$. Else, p is singular and $\dim T_p V > \dim_p V$. The *singular locus* and *regular locus* of V are the sets of singular and smooth points i.e.

$$V_{\text{sing}} = \{ p \in V \mid \dim T_p V \neq \dim_p V \}$$

$$V_{\text{reg}} = \{ p \in V \mid \dim T_p V = \dim_p V. \}$$

V is *smooth* or *nonsingular* if $V = V_{reg}$.

Theorem 10.3. *The following are true.*

- 1) $\forall j \geq 0$, $S_i(V) = \{p \in V \mid \dim T_p V \geq j\} \subseteq V$ is closed.
- 2) $\dim T_p V \ge \dim_p V \forall p \in V$.
- 3) If $p \in V$ is contained in more than one irreducible component of V, then p is singular. Else, p is in a unique irreducible component $V_p \subseteq V$, and p is smooth in V iff p is smooth in V_p .
- 4) V_{reg} is open and dense. Equivalenty, V_{sing} is closed and does not contain an irreducible component of V.

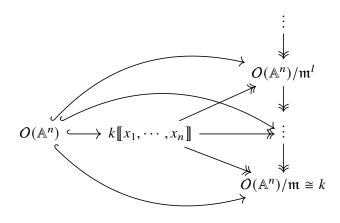
Definition 10.4. For commutative ring R with ideal $I \leq R$, the completion of R along I is $\widehat{R}_I = \{(f_1, f_2, \dots,) \in \prod_l R/I^l \mid f_i = f_j \mod I^i \forall i \leq j\}.$

Remark 10.5. Equivalenty, the competion is given as the inverse limit

$$R/I \leftarrow R/I^2 \leftarrow R/I^3 \leftarrow \cdots$$

where we have $\widehat{R}_I = \lim_l R/I^l$.

Remark 10.6. Let $\mathfrak{m} = (x_i)_{i \in [n]} \subseteq O(\mathbb{A}^n)$ be the maximal ideal corresponding to 0. Then, quotients correspond to truncating powers as $O(\mathbb{A}^n)/\mathfrak{m}^l \cong \{\text{polynomials with deg } < l\}$, which gives the commutative diagram



Definition 10.7. For algebraic set V and $p \in V$, the completion of O(V) along maximal ideal \mathfrak{m}_p is

$$\widehat{O}_{V,p} = \lim_{l} O(V) / \mathfrak{m}_{p}^{l}$$

Remark 10.8. We have map \widehat{O}_V , $p \twoheadrightarrow k$, $(f_1, f_2, \cdots) \to f_1(p) \quad (= f_j(p) \forall j)$ with kernel a maximal ideal $\widehat{\mathfrak{m}}_p \subseteq \widehat{O}_V$, p.

Proposition 10.9. The following are true.

- 1) The canonical homomorphism $O(V) \hookrightarrow \widehat{O}_{V,p}$ is injective. (Follows from Nakayam's Lemma)
- 2) $\widehat{O}_{V,p}$ has no nonzero nilpotent elements.
- 3) $\widehat{O}_{V,p}$ is Noetherian.
- 4) $\widehat{O}_{V,p}/\widehat{\mathfrak{m}}_p^l \cong O(V)/\mathfrak{m}_p^l \forall l \geq 0$
- 5) $\widehat{\mathfrak{m}}_p/\widehat{\mathfrak{m}}_p^2 \cong \mathfrak{m}_p/\mathfrak{m}_p^2$

Theorem 10.10. Let $n = dim T_p V$ and suppose $x_1, \dots, x_n \in \widehat{\mathfrak{m}}_p$ project to a basis for $T_p^* V \cong \widehat{\mathfrak{m}}_p / \widehat{\mathfrak{m}}_p^2$. Then, $\exists f_1, \dots, f_j \in \widehat{\mathfrak{m}}_p^2$ s.t.

$$\widehat{O}_{V,p} \cong k[[x_1,\cdots,x_n]]/(f_1,\cdots,f_j)$$

Corollary 10.11. Let $n = \dim T_p V$ and supposed $p \in V$ is a smooth point. Then,

$$\widehat{O}_{V,p} \cong k[[x_1,\cdots,x_n]] \cong \widehat{O}_{\mathbb{A}^n,0}$$

Example 10.12. Take $V = V(y^2 - x^3 - x^2)$ where $I(V) = (y^2 - x^3 - x^2)$ generated by $f = y^2 - x^3 - x^2$. Then,

$$\frac{\partial f}{\partial x} = -x(3x+2)$$
$$\frac{\partial f}{\partial y} = 2y$$

Therefore, we find

$$V_{\text{sing}} = V(y^2 - x^3 - x^2, x(3x + 2), 2y)$$

$$= V(x^2(x + 1), x(3x + 2), y)$$

$$= \{0\} \cup V(\underbrace{x + 1, 3x + 2}_{\text{no common zeros}}, y)$$

$$= \{0\}$$

11 Cones

Definition 11.1. A *cone* in \mathbb{A}^n with vertex $p \in \mathbb{A}^n$ is an algebraic set $W \subseteq \mathbb{A}^n$ s.t. $q \in W \implies \overline{pq} \subseteq W$ or $W = \bigcup_{\text{lines } L \subseteq W}$

Example 11.2. Examples of cones with vertex at 0: V(xy), $V(xy(x-y)(x-\lambda y)) \subseteq \mathbb{A}^2$ and $V(x^2+y^2-z^2) \subseteq \mathbb{A}^3$.

Nonexamples: cusp $V(y^2 - x^3) \subseteq \mathbb{A}^2$, Whitney umbrella $V(x^2 - zy^2)$

Definition 11.3. Polynomial $f \in O(\mathbb{A}^n) = k[x_1, \dots, x_n]$ is homogenous of degree d if it is a linear combination of monomials each with total degree of d i.e.

$$f = \sum_{i_1 + \dots + i_n = d} a_{i_1, \dots, i_n} x_1^{i_1} \cdots x_n^{i_n} \in k[x_1, \dots, x_n]$$

Proposition 11.4. *f is homogenous of degree d iff*

$$f(\lambda p) = \lambda^d f(p) \forall \lambda \in k, p \in k^n$$

Proof. We prove both directions.

 (\Longrightarrow) : Plugging in λ gives it immediately by linearity.

(\iff): If f were not homogenous of degree d, then $\exists p \in k^n, \lambda \neq 0 \in k$ s.t. $f(p) \neq 0$ and $f(\lambda p) = 0$. To see this, note $f \neq$, so pick $p \in k^n$ s.t. $f(p) \neq 0$. Observe $f(\lambda p)$ must vanish at a nonzero λ by dividing out until largest exponent of λ . Then, $f(\lambda p) = \lambda^d f(p) \forall \lambda \in k, p \in k^n$, but $f(\lambda p) = 0$ so $\lambda = 0$ which is a contradiction.

Lemma 11.5. For closed $X \subseteq \mathbb{A}^n$, TFAE

- 1) X is cone with vertex 0.
- 2) X is closed under rescaling i.e. $p \in X \implies \lambda p \in X \forall \lambda \in k$.
- 3) $I(X) = (f_1, \dots, f_l)$ for homogenous polynomials f_1, \dots, f_l .

Definition 11.6. For algebraic set V s.t. $0 \in V$, the *initial term* of polynomial $f \in I(V)$, is the homogeneous component of lowest degree in f denoted in(f). Correspondingly, the *initial ideal* is the ideal generated by the initial terms in(I)(V) = (in(f)). TODO: FIX UP

Definition 11.7. The tangent cone of V at 0 is

$$TC_0(V) = V(\operatorname{in}(I)(X)) \subseteq \mathbb{A}^n$$

Example 11.8. Let $V = V(y^2 - x^3)$, where $f = y^2 - x^3$. Then, $in(f) = y^2$, and so $TC_0(V) = V(y^2)$ or the x-axis.

12 Projective Space

Definition 12.1. The *projective space* \mathbb{P}^n is the set of all lines in \mathbb{A}^{n+1} through 0. The *projectivization* of a finite dimensional k-vector space is $\mathbb{P}(V) = \{L \leq V \mid \dim L = 1\}$, so $\mathbb{P}^n = \mathbb{P}(k^{n+1})$.

Remark 12.2. We can define an equivalence relation \sim by $v \sim w$ if $v = \lambda w$ for some $\lambda \in k \setminus \{0\}$. Then,

$$\mathbb{P}(V) \cong (V \setminus \{0\})/\sim.$$

Denote the equivalence class of $(x_0, \dots, x_n) \in \mathbb{A}^{n+1} \setminus \{0\}$ by $[x_0 : \dots : x_n]$.

Proposition 12.3. $\mathbb{P}^n \cong \mathbb{A}^n \sqcup \mathbb{P}^{n-1}$ as sets.

Proof. Take some $j \in [n]_0$ and let

$$U_j = \{ [x_0 : \cdots : x_n] \in \mathbb{P}^n \mid x_j \neq 0 \}$$

Then, we have bijective map φ_i

$$U_j \xrightarrow[\varphi^{-1}]{\varphi_j} \mathbb{A}^n$$

$$[x_0:\cdots:x_n] \underset{\varphi^{-1}}{\longleftrightarrow} (x_0/x_j,\cdots,x_{j-1},x_j/x_j=1,x_{j+1},\cdots x_n/x_j)$$

The complement of U_j is $\mathbb{P}^n \setminus U_j = \{[x_1 : \cdots : x_n] \mid x_j = 0\}$, so we have bijection

$$\mathbb{P}^n \setminus U_j \cong \mathbb{P}^{n-1}$$
$$[x_1 : \dots : x_{j-1} : 0 : x_{j+1} : \dots : x_n] \longleftrightarrow (x_1, \dots, x_{j-1}, x_{j+1}, \dots, x_n)$$

Corollary 12.4. By induction, $\mathbb{P}^n \cong \mathbb{A}^n \sqcup \mathbb{A}^{n-1} \sqcup \cdots \sqcup \mathbb{A}^1 \sqcup \mathbb{A}^0$.

Corollary 12.5. Each $[x_0:\cdots:x_n]\in\mathbb{P}^n$ is s.t. $(x_0,\cdots,x_n)\neq 0$, so $\mathbb{P}^n=\bigcup_{j\in[n]_0}U_j$.

Proposition 12.6. For $X \subseteq \mathbb{P}^n$, TFAE

- 1) $\phi_i(X \cap U_i) \subseteq \mathbb{A}^n$ is closed $\forall j \in [n]_0$
- 2) Preimage $\pi^{-1(V)}$ of projection $\pi: \mathbb{A}^{n+1} \setminus \{0\} \to \mathbb{P}^n$ is closed in $\mathbb{A}^{n+1} \setminus \{0\}$
- 3) $\pi^{-1}(V) \cup \{0\} \subseteq \mathbb{A}^{n+1}$ is a cone with vertex 0.
- 4) V is the vainishing set of a collection of homogenous polynomials $F_1, \dots, F_l \in O(\mathbb{A}^{n+1})$.

Definition 12.7. Any subset $V \subseteq \mathbb{P}^n$ that satisfies Prop 12.6 is called a *projective algebraic set*.

Corollary 12.8. The closed sets of the quotient topoology on $\mathbb{P}^n \cong (\mathbb{A}^{n+1} \setminus \{0\})/k^*$ are the projective algebraic sets.

Corollary 12.9. $U_0 \cdots U_n \subseteq \mathbb{P}^n$ are open, so they form an open cover of \mathbb{P}^n .

Corollary 12.10 (Projective Nullstellensatz).

 $\{closed\ T\in\mathbb{P}^n\}\cong\{radical\ W\trianglelefteq O(\mathbb{A}^{n+1})\ generated\ by\ homogenous\ poly.\}$

$$T \mapsto I(T)$$
$$V(W) \longleftrightarrow W$$

Corollary 12.11. $V \subseteq \mathbb{P}^n$ is irreducible iff I(V) is prime.

Corollary 12.12. *The Zariski topology on* \mathbb{P}^n *is Noetherian.*

Corollary 12.13. Every closed $V \subseteq \mathbb{P}^n$ has a decomposition into a union of irreducible closed subsets, unique up to permutation.

Definition 12.14. If $W \leq V$, then $\mathbb{P}(W) \leq \mathbb{P}(V)$ is called a *linear subspace*. It has *dimension* $\dim_k W - 1$. If it has dimension d, then it is a d-plane. If it has codimension 1, then it is a hyperplane.

Remark 12.15. Any linear subspace $W \leq V$ is a cone and hence $\mathbb{P}(W) \leq \mathbb{P}(V)$ is closed.

Definition 12.16. For $X \subseteq \mathbb{P}(V)$, the *span of X* is the smallest linear subspace containing X i.e.

$$\operatorname{span} X = \bigcap_{\mathbb{P}(W): X \subseteq \mathbb{P}(W)} \mathbb{P}(W) \le \mathbb{P}(V)$$

Definition 12.17. Points $p_0, \dots, p_l \in \mathbb{P}(V)$ are *linearly independent* if span $\{p_0, \dots, p_l\}$ is an l-plane. Else, they are *linearly dependent*.

Definition 12.18. A homography or projective linear transformation is an isomorphism of projective spaces derived from a linear isomorphism i.e. $\varphi: V \xrightarrow{\cong} W$ gives $\mathbb{P}(\varphi): \mathbb{P}(V) \xrightarrow{\cong} \mathbb{P}(W)$

13 Location, Sheaves, & Varieties

Definition 13.1. For algebraic set $V \subseteq \mathbb{A}^n$ and open $U \subseteq V$, function $f: U \to k$ is regular if $\forall p \in U, \exists$ open subneighborhood $W \subseteq U$ of p and regular functions $g, h \in O(V)$ s.t.

1.
$$V(h) \cap W \neq \emptyset$$

$$2. \ f\big|_W = \frac{g\big|_W}{h\big|_W}$$

Proposition 13.2. For algebraic set V with $f \in O(V)$ and let $U_f = V \setminus V(f)$ be the associated open set. Then,

$$O(U_f) = \left\{ \frac{g}{f^n} \mid g \in O(V), n \ge 0 \right\}$$
$$= O(V)[f^{-1}]$$
$$= O(V)[t]/(tf - 1)$$

which is also known as the "localization of O(V) at f."

Definition 13.3. For topological space X, a *presheaf* of k-algebras (respectively sets, groups, rings, \cdots) is an assignment

$$U \mapsto \mathcal{F}(U)$$

of a k-algebra (respectively set, group, ring, \cdots) to each open set $U \subseteq X$ and a k-algebra (respectively set, group, ring, \cdots) homomorphism

$$\mathcal{F}(U) \to \mathcal{F}(V)$$

 $s \mapsto s_{U,V} \text{ denoted } s|_{V}$

for each open inclusion $V \subseteq U$ s.t.

1.
$$(-)_{U,U} = \mathrm{id}_{\mathcal{F}(U)} \ \forall \ \mathrm{open} \ U \subseteq X$$

2.
$$(-)_{U,V}(-)_{V,W} = (-)_{U,W} \forall \text{ open } W \subseteq V \subseteq U$$

A presheaf is a *sheaf* if the following 2 conditions hold \forall open covers $\bigcup_{i \in I} U_i$

- 1. Locality: if $s, t \in \mathcal{F}(U)$ are s.t. $s|_{U_i} = t|_{U_i} \forall i \in I$, then s = t.
- 2. Glueing: if $s_i \in \mathcal{F}(U_i) \forall i \in I$ are s.t. $s_i \big|_{U_i \cap U_j} = s_j \big|_{U_i \cap U_j} \forall i, j \in I$, then $\exists s \in \mathcal{F}(U)$ s.t. $s \big|_{U_i} = s_i \forall i \in I$.

A subsheaf $\mathcal{G} \subseteq \mathcal{F}$ is a sheaf s.t. $\mathcal{G}(U) \subseteq \mathcal{F}(U) \forall$ open $U \subseteq X$.

Example 13.4. For topological space X,

$$\mathcal{F}un_X^k: U \mapsto \{k\text{-valued functions on } U\}$$

forms a sheaf.

$$C_X^0: U \mapsto \{\text{continuous } \mathbb{R}\text{-valued functions on } U\}$$

forms a subsheaf of $\mathcal{F}\mathrm{un}_X^\mathbb{R}$. If $V\subseteq \mathbb{A}^n$ is closed,

$$O_X: U \mapsto O(U)$$

is a subsheaf of \mathcal{F} un^k_r.

Definition 13.5. A (concrete) ringed space over k is a topological space X equipped with a subsheaf $O_X \subseteq \mathcal{F}un_X^k$.

Definition 13.6. An *algebraic variety over k* is a concrete ringed space (V, O(V)) if V is Noetherian and locally isomorphic to a closed subset of affine space.

Definition 13.7. An algebraic variety $(V, \mathcal{O}(V))$ is

- affine if it is isomorphic to a closed subset of \mathbb{A}^n for an n > 0.
- quasi-affine if it is isomorphic to an open subset of an affine variety (i.e. $V \cong W \setminus X$ for $X \subseteq W \subseteq \mathbb{A}^n$ closed).
- projective if it is isomorphic to a closed subset of a projective space.
- quasi-projective if it is isomorphic to an open subset of an open subset in a projective variety (i.e. $V \cong W \setminus Z$ for $Z \subseteq W \subseteq \mathbb{P}^n$ closed).

Remark 13.8. affine \implies quasi-affine \implies quasi-projective \iff projective